首页> 外文OA文献 >Optimal Design and Operation of Distributed Low-Carbon Energy Technologies in Commercial Buildings
【2h】

Optimal Design and Operation of Distributed Low-Carbon Energy Technologies in Commercial Buildings

机译:商业建筑中分布式低碳能源技术的优化设计与运行

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Commercial buildings are large energy consumers and opportunities exist to improve the way they produce and consume electricity, heating and cooling. If energy system integration is feasible, this can lead to significant reductions in energy consumption and emissions. In this context, this work expands on an existing integrated Technology Selection and Operation (TSO) optimisation model for distributed energy systems (DES). The model considers combined heat and power (CHP) and organic Rankine cycle (ORC) engines, absorption chillers, photovoltaic panels and batteries with the aim of guiding decision makers in making attractive investments that are technically feasible and environmentally sound. A retrofit case study of a UK food distribution centre is presented to showcase the benefits and trade-offs that integrated energy systems present by contrasting outcomes when different technologies are considered. Results show that the preferred investment options select a CHP coupled either to an ORC unit or to an absorption chiller. These solutions provide appealing internal rates of return of 28–30% with paybacks within 3.5–3.7 years, while also decarbonising the building by 95–96% (if green gas is used to power the site). Overall, the TSO model provides valuable insights allowing stakeholders to make well-informed decisions when evaluating complex integrated energy systems.
机译:商业建筑是大量的能源消费者,并且存在改善其生产和消费电力,供暖和制冷方式的机会。如果能源系统集成可行,则可以大大减少能源消耗和排放。在这种情况下,这项工作扩展了现有的分布式能源系统(DES)的集成技术选择和操作(TSO)优化模型。该模型考虑了热电联产(CHP)和有机朗肯循环(ORC)发动机,吸收式制冷机,光伏板和电池的使用,旨在指导决策者进行技术上可行且对环境无害的有吸引力的投资。提出了英国食品配送中心的改造案例研究,通过对比考虑不同技术时的结果,展示了集成能源系统所带来的好处和取舍。结果表明,首选的投资选择是选择与ORC单元或吸收式制冷机耦合的CHP。这些解决方案的内部收益率极具吸引力,在3.5-3.7年内可实现28-30%的回报,同时还能使建筑物的碳减少95-96%(如果使用绿色气体为场地供电)。总体而言,TSO模型提供了宝贵的见解,使利益相关者可以在评估复杂的集成能源系统时做出明智的决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号